ОГЭ 2023 Ященко 3 вариант ФИПИ школе полный разбор!
Решаем 3 вариант Ященко ОГЭ 2023 года сборника ФИПИ школе 36 вариантов. Разбор всех заданий. Готовимся к ОГЭ по математике! Разбор заданий ОГЭ из сборника Ященко за 2023 год ФИПИ школе 36 вариантов.
Помочь проекту:
ОГЭ по математике; ОГЭ математика 2022; ОГЭ 2023 Ященко; Ященко 36 типовых вариантов; Математика 9 класс; Подготовка к ОГЭ 2023; ОГЭ; Сдать ОГЭ по математике; ОГЭ алгебра; ОГЭ геометрия;
группа ВК:
сайт:
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Тайминг:
00:00:00 - приветствие
00:01:00 - Задание 1. Длина зонта в сложенном виде равна 20 см и складывается из длины ручки (рис. 3) и трети длины спицы (зонт в три сложения). Найдите длину спицы, если длина ручки зонта равна 5,9 см.
00:01:56 - Задание 2. Поскольку зонт сшит из треугольников, рассуждал Петя, площадь его поверхности можно найти как сумму площадей треугольников. Вычислите площадь поверхности зонта методом Пети, если высота каждого равнобедренного треугольника, проведённая к основанию, равна 53,1 см. Ответ дайте в квадратных сантиметрах с округлением до десятков.
00:03:26 - Задание 3. Вася предположил, что купол зонта имеет форму сферического сегмента. Вычислите радиус R сферы купола, зная, что ОС = R (рис. 2). Ответ дайте в сантиметрах.
00:05:15 - Задание 4. Вася нашёл площадь купола зонта как площадь поверхности сферического сегмента по формуле S=2πRh, где R — радиус сферы, a h — высота сегмента. Рассчитайте площадь поверхности купола способом Васи. Число π округлите до 3,14. Ответ дайте в квадратных сантиметрах с округлением до целого.
00:06:27 - Задание 5. Рулон ткани имеет длину 35 м и ширину 80 см. На фабрике из этого рулона были вырезаны треугольные клинья для 29 зонтов, таких же, как зонт, который был у Пети и Васи. Каждый треугольник с учётом припуска на швы имеет площадь 1050 кв. см. Оставшаяся ткань пошла в обрезки. Сколько процентов ткани рулона пошло в обрезки?
00:08:29 - Задание 6. Найдите значение выражения 6*(1/3)^2-17* 1/3
00:08:54 - Задание 7. На координатной прямой отмечены числа x и y. Какое из приведенных утверждений неверно?
00:10:16 - Задание 8. Найдите значение выражения ((a^5)^3*a^6)/a^22 при a = 2.
00:11:08 - Задание 9. Найдите корень уравнения 3(2-x) 2x-3x=4.
00:11:54 - Задание 10. Люба, Олег, Георгий, Аня и Наташа бросили жребий, кому начинать игру. Найдите вероятность того, что начинать игру должен будет мальчик.
00:12:21 - Задание 11. На рисунках изображены графики функций вида y=ax^2 bx c. Установите соответствие между знаками коэффициентов a и c и графиками функций.
00:13:12 - Задание 12.
00:13:48 - Задание 13. При каких значениях a выражение 7a 3 принимает только отрицательные значения?
00:14:12 - Задание 14. В кафе есть только квадратные столики, за каждый из которых могут сесть 4 человека. Если сдвинуть два квадратных столика, то получится стол, за который могут сесть 6 человек. На рисунке изображён случай, когда сдвинули 3 квадратных столика вдоль одной линии. В этом случае получился стол, за который могут сесть 8 человек. Сколько человек может сесть за стол, который получится, если сдвинуть 18 квадратных столиков вдоль одной линии?
00:15:40 - Задание 15. В остроугольном треугольнике АВС проведена высота ВН, ∠BAC=39. Найдите угол АВН. Ответ дайте в градусах.
00:16:07 - Задание 16. Радиус окружности, вписанной в равнобедренную трапецию, равен 22. Найдите высоту этой трапеции.
00:16:30 - Задание 17. Площадь параллелограмма равна 60, а две его стороны равны 4 и 20. Найдите его высоты. В ответе укажите большую высоту.
00:17:15 - Задание 18. На клетчатой бумаге с размером клетки 1x1 изображена трапеция. Найдите её площадь.
00:18:00 - Задание 19. Какое из следующих утверждений верно?
1) Тангенс любого острого угла меньше единицы.
2) Средняя линия трапеции равна сумме её оснований.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.
В ответ запишите номер выбранного утверждения.
00:18:19 - Задание 20. Сократите дробь (80^n)/(4^(2n-1)*5^(n-2))
00:20:06 - Задание 21. Свежие фрукты содержат 79 % воды, а высушенные — 16% . Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?
00:21:43 - Задание 22. Постройте график функции. Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
00:25:13 - Задание 23. Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30° и 135°, a CD=17.
00:28:23 - Задание 24. Биссектрисы углов А и D параллелограмма ABCD пересекаются в точке К, лежащей на стороне ВС. Докажите, что К—середина ВС.
00:30:26 - Задание 25. Окружности радиусов 12 и 20 касаются внешним образом. Точки А и В лежат на первой окружности, точки С и D — на второй. При этом АС и BD — общие касательные окружностей. Найдите расстояние между прямыми АВ и CD.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
#mrMathlesson #Ященко #ОГЭ #математика
1 view
24
6
7 months ago 00:00:00 6
ДОСРОЧНЫЙ ЕГЭ 2024 🔥 Разбор реальных вариантов | Академикс