Доклад: Использование поиска архитектуры для эффективной реализации в проектах машинного зрения.
Доклад: Использование поиска архитектуры для эффективной реализации в проектах машинного зрения.
В большинстве современных исследований по ИИ, глубокие нейронные сети (DNN) разрабатываются исключительно для улучшения точности прогнозирования, часто игнорируя реальные ограничения - требования к вычислительным мощностям и памяти.
Авторы исследований обычно предпочитают использовать SOTA DNN из научной литературы из-за описанных экспериментов и накопленного в них опыта, необходимых для разработки новых моделей.
Однако эти DNN зачастую требовательны к ресурсам, чтобы работать на оборудовании с ограниченной ресурсоемкостью, например, на встроенных процессорах. Для решения этой проблемы была предложена технология “Neural Architecture Search (NAS)“, это поиск компромисса между оптимальным дизайном сети и эффективным развертыванием.
В представленном на саммите Embedded Vision Summit (05/2024) докладе, Хирам Райо Торрес Родригес, Senior AI Research Engineer в компании NXP Semiconductors, объясняет принципы технологии NAS и ее применении для оптимизации моделей машинного зрения на устройствах с ограниченными ресурсами.
Он показывает, как NAS может обеспечить эффективную реализацию проекта машинного зрения учитывая аспекты развертывания, чтобы получить индивидуальные решения для Edge-узла и как решить проблему масштабируемости NAS с помощью умного дизайна пространства поиска и эффективного выбора оценки производительности.
2,486 views
4
1
2 months ago 01:20:40 1
💥Любимые песни | Трогательные истории жизни | Душевные рассказы. ДОБРЫЙ ВЕЧЕР! 9 выпуск
2 months ago 00:01:43 1
Шаблон презентации небольшого отчета об путешествиях
2 months ago 00:32:06 1
РИСКИ ЗВЕЗДНОЙ БОЛЕЗНИ
2 months ago 00:08:35 1
И снова о безопасности в школе: о безопасности биометрических данных ребенка.
2 months ago 01:32:04 4
Отсылка данных в Zabbix без использования агентов / Discovery Trapper